2w^2=234

Simple and best practice solution for 2w^2=234 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2w^2=234 equation:



2w^2=234
We move all terms to the left:
2w^2-(234)=0
a = 2; b = 0; c = -234;
Δ = b2-4ac
Δ = 02-4·2·(-234)
Δ = 1872
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1872}=\sqrt{144*13}=\sqrt{144}*\sqrt{13}=12\sqrt{13}$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{13}}{2*2}=\frac{0-12\sqrt{13}}{4} =-\frac{12\sqrt{13}}{4} =-3\sqrt{13} $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{13}}{2*2}=\frac{0+12\sqrt{13}}{4} =\frac{12\sqrt{13}}{4} =3\sqrt{13} $

See similar equations:

| -1.27=y-3.4 | | -8=3t-5t | | 8=-4i+2i | | 7/10x248.50=7/10x10/7x0 | | 13=5n-3 | | (28x-2)+(10x+30)=180 | | 0=3p+p | | 3x-17=3x+33 | | 5x-13=x-5 | | 300+5d=500 | | -5=-3q+2q | | 7-x=3x-5x | | 9y/10=-8 | | 6m³m=5 | | 12.5=t÷3.14 | | -24=-2t-4t | | (5x+20)+3x=360 | | -8=3m-5m | | 1/2x+5/2x=31/2-3/2x | | 5x+4=4×-2 | | -3=-o+2o | | 248.50=7/10x0 | | 6x7=49 | | 16=-z-3z | | -20=5n | | 8n-(5n-4)=5 | | -8x–14=7(-2–4x)+4x | | -10n+3(8+8n)=8-6(n-4) | | 7x×2=44 | | 10+k/3=1 | | -10n+3(8+8n)=8-6(n-4 | | -8x—14=7(-2–4x)+4x |

Equations solver categories